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Abstract
To date, efficient lab-based paradigms for the study of cognitive decrements over short timespans are lacking, which limits our understanding regarding their underlying mechanisms. Here, we sought to develop an easy to implement lab-based paradigm for the study of changes in cognitive performance over brief time periods. In four studies, we asked participants to indicate as fast as possible whether target stimuli appeared on either the left or right side of the screen in an ongoing manner. This was done through either four shorter (50 trials) or longer (200 trials) blocks conducted in a randomized order. In all experiments, we found that the correct answers per second declined over trials in both conditions. Computational modeling suggested that this effect is driven by the reduction in allocation of cognitive resources to the task. This paradigm can therefore track the decline in cognitive performance in a relatively fast and easy to implement manner. Employing it can ease the collection of large datasets in a relatively short time, which may further aid in the study of the causes and consequences of cognitive fatigue, and provide the settings for further clinical and neuroscientific research. 
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Introduction
Declines in cognitive performance over hours of task execution is evident in everyday settings (Parkes, 1995; Wadsworth et al., 2006), and has spurred ongoing theoretical debates (Ackerman, 2011). For instance, one line of research suggests that people lose motivation to engage in the same task over time (Kool & Botvinick, 2014, 2018). Within this framework, there are still numerous competing accounts suggesting people shift their attention, or are less motivated to engage in a focal task over time (Inzlicht et al., 2014; Kool & Botvinick, 2014; Kurzban et al., 2013). Alternatively, other models suggest people experience an intrinsic cost for employing cognitive functions, driven by the brain’ computational limitations in performing a focal task (Shenhav et al., 2017). Perhaps surprisingly, researchers have yet to demonstrate an efficient method to track changes in cognitive performance in the short term. Such a method is a crucial for establishing the phenomenology of performance decline, which will enable better judgement and refinement of theories regarding decline in cognitive performance. The current work aims to address this methodological lacuna by developing a reliable lab task which allows for efficient experimental designs.
Studying the decline in cognitive performance over task engagement may be expensive and time consuming. As such studies usually require participants to perform prolonged tasks that can extend through hours (Bergum & Lehr, 1963; Catalano, 1973; Hassan et al., 2023; Lorist et al., 2005; Parkes, 1995; Wiehler et al., 2022), or even days (Smith et al., 2006; Van Dongen et al., 2003), they may require long experimental sessions (Blain et al., 2016; Wiehler et al., 2022), and large sample sizes. The long task duration seems necessary for eliciting a large enough effect size for the decline in cognitive performance over time (e.g., r = .39; Hassan et al., 2023), as the use in short-term tasks were found to result in small effects such as d = 0.10 (Dang et al., 2021).
In addition, the difficulty or novelty of the task itself can mask the measurement of cognitive decline over time. For example, given a novel task, participants can improve their performance over time through practice (Ritter & Schooler, 2001). The same applies to difficult tasks, in which accuracy rates at the start of a task are characteristically low– participants can improve their performance the more experienced they get. These learning effects, in turn, can potentially counteract certain influences of motivational or cognitive decrements on performance (Katzir et al., 2020). 
Environmental cues such as information on goal progress can prevent the decreases in performance over time in both cognitive and physical performance (Cheema & Bagchi, 2011; Devine et al., 2024). Temporal or task progress information may be, in many settings, available to participants by counting the performed trials, estimating the time left, or by simply consulting one’s wristwatch. Given all of the above might counteract observable performance decline in lab settings, they pose logistical and methodological difficulties for researchers seeking to understand declines in cognitive performance over the course of a task. 
Accordingly, the goal of the current study was to develop a paradigm which enables the tracking of decline in cognitive performance in especially short timeframes (~2.5mins or ~8mins). Such a task would enable the studying of cognitive performance decrements in within-subject design, in turn achieving considerable statistical power with a relatively low investment of logistical resources (e.g., time, sample size, fundings etc.). 
To this end, we developed a simple attentional task (Figure 1), based on the classic Posner cuing task (Posner, 1980) originally designed to examine voluntary shifts in attention. In this task, participants were asked to indicate as quickly as possible whether a target appeared on the right or on the left side of the screen. This task paradigm fulfills several desiderata. First, the task should be relatively simple and easy to perform in order to mitigate practice effects, which would presumably result in a (positive) learning curve. Second, the task should impose continuous cognitive demands on participants for the duration of the block. In other words, as soon as participants provide a response for one trial, they should stay focused on tracking the target of the following trial, meaning the task is rapidly paced (Devine et al., 2024). Third, the task needs to include an explicit measure of performance quality rather than mere effort exertion (e.g., accuracy rather than the number of keypresses per second; Emanuel et al., 2022). Fourth, the observed decline in this task should demonstrate such a strong effect such that common motivating factors will not mitigate it. Information about task progress has been demonstrated to counteract performance declines (or disengagement) in cognitive tasks (Cheema & Bagchi, 2011; Devine et al., 2024). This information might be openly accessible to participants by their wristwatch or on computer screens while performing experiments. The task should therefore include progress monitoring cues in through its validation, and provide evidence these will not overcome any decline in cognitive performance. Finally, the task should entail at least 50 trials, which amounts to at least two minutes of task performance in order to reliably monitor performance changes our recent studies find reliable changes in effort investment in tasks that last over two minutes (Emanuel et al., 2021, 2022).
In order to examine decline in cognitive performance over extremely short timespans, yet also through blocks of longer duration, the paradigm included four short (50 trials; ~2.5mins) blocks, along with four long (200 trials; ~8mins) blocks. Participants could monitor their progress via a progress bar and a trial counter at the top of the screen (Devine et al., 2024; Emanuel et al., 2022; Katzir et al., 2020). 
We used correct responses per second to measure cognitive performance, as it combined reaction time and accuracy (Woltz & Was, 2006). This measure, also termed “efficiency” (Akhtar & Enns, 1989; Bruyer & Brysbaert, 2011; Liesefeld & Janczyk, 2019; Townsend & Ashby, 1983), captures both the goals of responding as fast as possible, and as accurately as possible. 
In four identical experiments, which serve as direct replications of each other, we examined the extent to which individuals show a decline in performance across short and long blocks requiring continuous attention. Further, to examine whether observed declines in cognitive performance stems from changes in information processing fidelity (or, attention to the focal task) versus alterations in response caution, we used a Drift Diffusion Model (DDM; Ratcliff & Rouder, 1998). DDM assumes that in order to choose between two options, the internal evidence towards one option or the other accumulate over time until a response threshold is met.       
Method
Participants 
Fifty-six participants (46 women; Mage = 21.92, SDage = 3.16) were recruited in exchange for course credits in Experiment 1, and 55 participants (26 women; Mage = 22.74, SDage = 2.53), 58 participants (33 women; Mage = 25.10, SDage = 3.97), and 59 participants (40 women; Mage = 25.98, SDage = 4.07), were recruited in exchange for payment in Experiments 2, 3, and 4, respectively.  All materials and procedures for all studies were approved by the Tel-Aviv University institutional review board. One participant was excluded from Experiment 1 owing to a technical error. As direct replications of Experiment 1, Experiments 2-4 sought to utilize similar sample sizes. 
Materials and Procedure
[bookmark: _Hlk509015092]All materials and procedures were identical across Experiments 1 through 4. Participants were told that they take part in a study of attention, and were seated in front of a 21.5" computer screen. Participants were instructed that their goal during the entire session is to respond as quickly and as accurately as possible to stimuli appearing either at the left or the right side of the screen using the corresponding “Z” or “M” keys (Figure 1). We emphasized that the faster participants would respond through this experiment, the shorter the time they will have to spend in the lab doing it. A visual progress bar was filled according to the current trial of the block – it represented the trials completed so far (red rectangle) out of the number of trials at the current block (black rectangle). We also presented to participants the current trial number and number of the total trials constituting the current block. 
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Description automatically generated]Figure 1. An example of the experimental procedure from the practice block in Study 1. Participants had to indicate as fast as possible whether the target appeared either at the left or right square. The black line at the top of the screen represented the number of trials in this block while the thinner red line represented the trials completed (i.e., a progress bar). Below the progress bar the left and right figures indicated the trials completed out the trials in that block, respectively.   

Participants then completed a 20-trial practice session. After a self-paced break, participants completed the experimental blocks, which consisted of four 50- and four 200-trial blocks presented in a randomized order. On each trial, a target stimulus appeared either within the left or right squares on the screen for 50ms (see Figure 1), after which participants’ responses were self-paced. After participants provided their answer regarding the side in which the target appeared, there was a 1200ms inter-trial interval before the next target appeared. A buzzer sound indicated participants chose the wrong side, yet no feedback was granted for correct trials given the anticipated high accuracy rates in this task. We verbally explained to participants that the slower After each block, participants could take a self-timed break before initiating the next block. We recorded the reaction time (RT; in seconds) and accuracy of each response. 
Data analysis
	we excluded responses which we suspected were guesses or mistaken keypresses, by omitting trials with reaction times (RTs) faster than 100ms, and trials with RTs slower than 3 seconds which we suspected were due to participants missing the appearance of the target due to momentary inattentiveness, eyeblink etc. All experiment and data analyses code are made available in a public repository (https://osf.io/4vs2c/?view_only=48e105bd78914ec2b51167d082dd5b4f).  	
[bookmark: _Hlk529034809] We divided the accuracy of each trial by its RT to compute a general measure of performance, i.e., correct answers per second (Katzir et al., 2020; Woltz & Was, 2006). This measure, while simple, has been demonstrated to be better able to detect RT and accuracy changes in a simulated dataset than other commonly used measures like inverse efficiency scores  (Vandierendonck, 2017).  To examine changes in performance over trial number, estimated mixed-effects regression models using the lme4, lmeTest, packages (Bates et al., 2015, p. 4; Kuznetsova et al., 2017) for R. Random intercepts and random slopes for trial number were taken over participants and added according to the recommendations of Bliese & Ployhart (2002), based on the deviance fit index, as long as their addition did not result in a convergence error. Once a best-fitting model was identified for the 50-trials blocks in Experiment 1, we fit that same model specification to both block lengths, across all experiments. The final model included a random intercept. In addition, separately for the 50- and 200-trials blocks with trial number as the predictor and correct answers per second as the dependent variable.
Hierarchical drift-diffusion model
Hierarchical drift diffusion models (HDDMs) allow testing trial-by-trial variations in decision-parameters (e.g. threshold and drift rate) (Frank et al., 2015). We fitted a hierarchical drift diffusion model to investigate the effect of trial number on attention-based decisions, modeled as the drift rate and response thresholds in both the short and the long conditions. These parameters were fit hierarchically, both to individual subjects and constrained by the group-level parameter distribution. We fit each of the DDM parameters—the drift rate, non-decision time, and threshold— on a trial-by-trial basis as a linear function of trial number with. In other words, we examined the effect of trial number on each DDM parameter at the group level to better understand the specific mechanism underlying declines in task performance over trial number.
We used the HDDM toolbox (Version 0.6.0; Wiecki et al., 2013) for Python, which uses Markov Chain Monte-Carlo techniques to estimate parameters. Parameters were assumed to be normally-distributed (for real-valued parameters) or Gamma-distributed (for positive-valued parameters) and centered around the group mean with group variance for each subject. Prior distributions for each parameter were informed by several studies reporting best fitting DDM parameters recovered on a range of decision-making tasks (Wiecki et al., 2013). We used the short condition in Experiment 1 to examine the best fitted model specifications, and later tested the winning model on the rest of the conditions in all experiments. To estimate the HDDM parameters across the four 50-trial blocks in Experiment 1, 50,000 samples were drawn from this model, discarding the first 2/3 of samples for ‘burn-in,’ resulting in 16,667 samples. We tested all eight possible permutations of model setups examining the effects trial index on each DDM parameter (e.g., only drift rate changes over trial number, only drift rate and threshold change over trial number, all parameters change over trial number etc.), taking random intercepts taken per participant, and computed the deviance information criterion (DIC) score for each model (Spiegelhalter et al., 2002; see Supplementary Table 1 for the DIC for each model). The best-fitting model, determined by the lowest DIC score, included trial number-dependent changes in drift rate, threshold, and non-decision time (Table 1). We then re-fit this model to the data, using an identical separate 16,667 effective samples chain, and evaluated model convergence using the R-hat statistic, (Brooks & Gelman, 1998), which were all below 1.1 (indicating satisfactory convergence). The only fitted parameters with an R-hat above 1.1, all belonged to a single participant (see Supplemental Materials for R-hat distribution. We calculated parameter point estimates (i.e., means) and 95% highest posterior density intervals (HPD) using the aggregated posteriors of both chains, and tested the exact same model on the short condition of the three other experiments. 
Results
Performance 
We first examined how the correct responses per second varied as a function of trial number in Experiment 1 (Figure 2) and Experiments 2-4 (Supplemental Figures 3-5), observing a prominent decline in correct responses per second over the course of each block. Statistically, we observed a decline over trials—as indicated by a significant main effect of trial number—in the rate of correct responses per second in Experiment 1 both during 50-trial blocks (b trials = -.006, SE = .0008, p < .001, 95% CI: [-.008, -.004]) and also during 200-trials blocks (b trials = -.0008, SE = .001, p < .001, 95% CI: [-.001, -.0006]). Experiments 2-4 replicated this decline in performance over trial number in both short (50 trials; Figure 3A) and long blocks (200 trials; Figure 3B; main effect of trial number ps < .001)). 
We next examined whether block order (encoded as 1 for the first block, 2 for the second, etc.) affected this result, as participants can also show a decline in performance across the session rather than in particular blocks. This was done for the short and long conditions, by testing identical models to the ones above with additional terms for block order and a trial X block order interaction. We found a significant main effect of order in both the short condition (b order = -.072, SE = .021, p < .001, 95% CI: [-.114, -.031]) and the long condition (b order = -.045, SE = .010, p < .001, 95% CI: [-.065, -.023]), which were replicated in Experiments 3 and 4 in the short conditions (ps < .009) and across all experiments in the long conditions (all ps < .001). This indicated that participants performance also decreased over the experimental session. Finally, we did not observe a significant trial number by block order interaction either in the short condition of Experiment 1 (b trials X order = .00006, SE = .0001, p = .926, 95% CI: [-.001,.001]), or in the short condition of Experiments 2-4 (all ps > .481). We did find, however, a significant trial number by order interaction in the long condition of Experiment 1 (b trials X order = .0002, SE = .00005, p = .002, 95% CI: [.00009,.0004]), which was replicated in Experiments 3 and 4 (ps < .001). 
Taken together, these results suggest that participants decreased their performance less within each block the more time they spent performing the task overall. See the Supplemental Materials section for detailed analyses, order effects, and descriptive performance figures for Experiments 2-4. 
[image: A graph of different types of lines

Description automatically generated with medium confidence]
Figure 2. Correct answers per second by trial number in Experiment 1 for (A) the 200-trials blocks and (B) the 50-trials blocks. The black dots represent the mean correct answers per second across the four blocks, and the gray lines represent the standard error of the mean (Morey, 2008).
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Figure 3. Results of the mixed models’ trial coefficient in all experiments (y axis) for (A) the 50-trials blocks and (B) the 200-trials blocks. The x axis represents the coefficient of the linear change in correct answers per second by trial number (i.e., time), whereas the black dots are its point estimate. The sample sizes of Studies 1, 2, 3, and 4, were 56, 55, 58, 59 participants, respectively. Error bars represent 95% confidence intervals, which indicate significant negative coefficients for all experiments in both conditions, as they exclude zero (represented by the dashed line). These results confirm that a decrease in cognitive performance is reliably observed in this task, even at extremely short bouts of activity in the short condition. 
Computational modeling: Hierarchical drift-diffusion model
To examine whether the observed reduction in correct answers per second are explained by the decreased information processing efficiency to task stimuli over time (which would manifest as a trial-induced change in drift rate) versus a change in response caution (manifesting as trial-induced changes in response thresholds; Ratcliff & Rouder, 1998), we jointly modeled participants' responses and RTs using a HDDM (Wiecki et al., 2013). We discuss the modeling results of the short conditions, as these are highly relevant from a practical point of view (see Introduction section). After estimating the posterior distributions of the HDDM parameters to all the short 50-trials blocks conditions in all experiments separately, the negative effect of trial number upon drift rate indicates that the drift rate parameter decreased as participants completed more trials within the block (Figures 4A and 4B). Statistically, this drift rate effect was significant based upon the exclusion of zero from the 95% HPD (e.g., Experiment 1 short condition: bmean = -.011, 95% CI [-.011, -.003]). In addition, the 95% HPD of posterior distribution of the effect of trial number on response threshold included zero in all experiments and conditions but the short condition in Experiment 4 (e.g., Experiment 1 short condition: bmean = .002, 95% CI [-.001, .005]). Together, these findings suggest that participants’ information processing efficiency, rather than being more cautious, decreased over the block. In other words, across both conditions, the DDM analysis suggests that the decline in performance over time in this task was the result of a reduction in task-relevant information processing efficiency, rather than a change in response caution, as participants completed more trials through the block. 
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[bookmark: _Hlk157682183]Figure 4. Results of the trial number-dependent parameter estimates for the hierarchical drift-diffusion modeling in the 50-trials (A), and 200-trials (B) blocks for each experiment, respectively. The y axis represents the experiment index, while the x axis the estimate magnitude. The red, green, and blue colors represent the threshold, non-decision time, and drift rate changes over trial number, respectively. The triangles at the bottom of the figure represent the mean parameter estimates across all experiments. Error bars represent 95% highest posterior density interval. 

Discussion
Across four identical experiments, we asked participants to perform a simple cognitive task, which required them to sustain their attention over the course of the experimental blocks. Participants performed the task through either four shorter (50 trials) or longer (200 trials) blocks. Both conditions are considerably shorter than common methods used to examine cognitive decline over the course of task performance (e.g., two hours, Hassan et al., 2023; six hours, Wiehler et al., 2022). We found that participants’ performance declined over trials in both the longer and shorter blocks, as indicated by the correct answers per second. In addition, computational modeling suggested that this decline stemmed from a decline in information processing fidelity over the task (i.e., the drift rate parameter in a drift diffusion model). These results suggest that the experimental paradigm employed here is useful for tracking decline in cognitive performance and through decline in the allocation of attentional resources within especially brief periods.
The present findings bear several implications for a study of cognitive performance over time. We have shown that declines in cognitive performance over time can be measured quickly and inexpensively—here, using a testing session as short 30-40mins per participant, and employing ~50 participants per experiment.  The current paradigm provides a substantial number of observations (1000 observations per participant over an experimental session) relative to the short time spent in their collection. In addition, the fact that the same effect replicated in all four experiments suggests the current design is highly reliable using a standard sample size. The time and cost efficiency of this paradigm could facilitate the implementation of various experimental procedures and techniques in laboratory settings. For example, researchers studying different interventions by which cognitive performance or motivation can be sustained over time (Emanuel et al., 2022), or whether mood can affect subsequent performance, can test their predictions efficiently through this task. 
Further, fits of drift diffusion model (DDM) to behavior in all four experiments revealed that these transient changes in performance are attributable to the drift rate parameter, rather than response threshold or non-decision time. The drift rate in this analysis reflects information procession efficiency (Mathias et al., 2017) whereas the threshold reflects the response caution—how much evidence is needed to make a response (Lin et al., 2020; Voss et al., 2004). Meanwhile, the non-decision time reflects the components of trial-by-trial RTs which do not factor into the decision process and thus unrelated to accuracy (e.g., motor execution). Specifically, we observed that the drift rate decreased over trials, which suggested that in the context of this attention-based task, participants exhibited reduced information processing efficiency, possibly owing to withdrawal of attentional resources from the task (Devine et al., 2024). This finding is in line with motivational models suggesting cognitive resources are mobilized away from performing a specific, effortful task the longer they engage in them (Inzlicht et al., 2014). For example, according to the opportunity cost model (Kurzban et al., 2013), the benefit of engaging with a focal task such as focusing on the target stimuli decreases over time relative to alternative tasks (e.g., mind wandering). On this view, people more likely to shift more cognitive resources to alternatives rather than the focal task over time (Dora et al., 2022). Alternatively, other effort investment models may suggest that information processing efficiency declines over time because people depleted a resource such as glucose required for high-level performance while exerting cognitive effort (Baumeister et al., 2007).
Finally, the current paradigm allows researchers to differentiate task-dependent changes in performance (i.e., fatigue; Ackerman, 2011) from mere tiredness (i.e., the need for sleeping at a certain time of day, caused by circadian rhythms or lack of sleep; Foster, 2020). Rather than requiring participants to perform tasks for hours (Wiehler et al., 2022), the current paradigm can overcome tiredness related confounds because tiredness most likely does not substantially change during one block or through most of the experimental procedure described in this work. 
The time efficient nature of the current paradigm bears potential directions for future research. Future studies may employ the current paradigm in the study of the neural processes underlying performance change or effort allocation. For example, researchers can manipulate neural activity through transcranial magnetic stimulation, which effect spans over minutes (Thut & Pascual-Leone, 2010), or pharmacological interventions (Swanson & Volkow, 2003), which effect spans ~one hour, and test subsequent effects on performance by examining behavior in the current paradigm. Furthermore, the current paradigm can be used to test for differences in cognitive performance over time between clinical and control populations, enabling a better understanding of various psychological disorders. For example, people suffering from clinical depression might show a different pattern of performance decline in this task over time, compared to controls, which may aid in characterizing the task-dependent effects relating to depressive disorders.
In four experiments, we have demonstrated the utility of a new cognitive task paradigm for examining cognitive performance decrements over especially brief periods. These declines are explained by the reduction in cognitive resources invested into the task over time. This task offers a time and cost-efficient method for examining cognitive performance over time, and can potentially be employed within a wide range of domains including neuroscientific or clinical experiments.
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	Table 1. Parameter estimates for the best fitted DDM model in Experiment 1’s short condition

	
	Mean
	SD
	L-HPD
	Median
	U-HPD

	Drift rate Intercept
	8.684
	0.418
	7.875
	8.684
	9.507

	Drift rate Trial number
	-0.011
	0.004
	-0.018
	-0.011
	-0.003

	Threshold Intercept
	2.410
	0.168
	2.106
	2.400
	2.769

	Threshold Trial number
	0.002
	0.001
	-0.001
	0.002
	0.005

	Non-decision time Intercept
	0.076
	0.006
	0.065
	0.076
	0.087

	Non-decision time Trial number
	0.00004
	0.00006
	-0.00009
	0.00004
	0.00016

	SD – standard deviation, L-HPD – lower bound (2.5%) of the high posterior density interval, H-HPD – upper bound (97.5%) of the high posterior density interval.
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